India looks to locally-made batteries for an energy independent future

India looks to locally-made batteries for an energy independent future

An Interview with Michael Burz, President and CEO

The future of the planet depends on moving rapidly away from polluting fossil-fuel-based energy systems, and nowhere is that need for an energy independent future more apparent than in some of the fastest developing countries in the world. Nearly one in five people on the planet live in India or Bangladesh, and both countries have their sights set on decarbonizing their transportation systems and building a more resilient grid to serve their burgeoning populations. We asked Michael Burz, President and CEO of Enzinc, for his observations after returning from a ten-day whirlwind tour of New Delhi and Hyderabad, India, and Dhaka, Bangladesh. 

 

Michael Burz on stage at the International Zinc Association Global Summit 2023 in New Delhi

What took you to India?

We were asked to speak at the International Zinc Association’s fourth global zinc summit on the use of zinc for advanced batteries and decided to take advantage of the fact that we would be in India to meet with additional potential Industry Advisory Group (IAG) members. So, we combined the conference with a trip to talk to some of the largest lead acid battery companies in India and Bangladesh.

What surprised you most about the market and the companies you met there?

First, how large they are. As you know, India has about 1.4 billion people and it’s projected that, by the end of the year, it will have more people than China. Bangladesh itself is approaching two hundred million people. It’s one thing to talk about the aims and growth of a country, but it’s another to be there and see how rapidly they’re moving. To see how committed they are to the electrification of both mobility and stationary and storage was very inspiring. If you look at what they intend to do, they are a model for rapidly growing markets in the 21st century: rapid deployment of electrification for both mobility and stationary energy storage with a focus on safety, high performance, and recyclability.

What did you see in the mobility market there? Many of us have an image of Indian transportation including rickshaws, are you seeing those being electrified? Are you seeing other modes get deployed?

There’s an intent on the part of the Indian Government to electrify as much as possible. At the moment, the three-wheeled market is very large, but most of those come from China and are powered by internal combustion engines. The Indian government’s primary focus is to take the mobility arena—two-wheelers and three-wheelers, and urban four-wheelers or what one of our IAG members calls Last Mile Mobility (LMM)—and electrify all of them.

What about stationary storage? What are some of the differences that you see there versus the U.S. market?

It’s interesting: their version of residential energy storage is not the same as ours. In the United States, we tend to think of residential energy storage on the multi-kilowatt hour scale, say 15 kWh batteries to provide backup power for six to eight hours, overnight. In India and Bangladesh, what they’re interested in is essentially grid stability: batteries that can recharge quickly and be used for when the power drops out, with only two to four hours of discharge time. It is not just the way in which they want to use it, but how affordable it needs to be for people buying small backup battery systems for their apartment or house.

decarbonizing transportation systems and building a more resilient grid to serve burgeoning populations.

There have been a lot of news stories about fires caused by cheaper lithium-ion batteries, such as a tragic fire that engulfed a hotel above an e-scooter shop in Mumbai. Can you talk about the concerns you’re hearing about lithium in that market?

It’s obvious when you take a look at photographs of large-scale Indian and Bangladeshi cities that they’re very, very dense, so safety is absolutely critical. We heard that a number of times: for this highly dense urban environment, safety is absolutely paramount.

If you combine that, with wariness of the supply chain from China—whether it’s the materials to make lithium batteries or the offer to build the factories for them—the Indians and the Bangladeshis are very, very keen on domestic control. What they recognize is that if China controls, as they do, 60 to 80% of the battery materials, they’ll actually be building batteries domestically that will compete with batteries from their very suppliers: the Chinese manufacturers. They want to decouple that.

What they were looking for is something that they can build domestically under their own control, using their materials. And that offers them both safety and affordability. That’s why they were interested in Enzinc’s nickel zinc technology.

You spoke at the Global Zinc Summit in New Delhi. Do you think the global zinc industry understands the potential of zinc as a battery material?

Frankly, up until we presented at the conference, I don’t think that the potential for zinc to be used as a high-performance battery that is equivalent to Lithium Iron Phosphate (LFP) was even on people’s radar. In fact, Andrew Green, who is the Executive Director of the International Zinc Association shared a chart that was done by Bloomberg, which showed that zinc batteries could require almost one million tons of additional zinc by the year 2030. But all of that assumed that zinc was relegated to small-scale or niche markets around stationary energy storage. The fact that batteries with “Enzinc Inside” can offer an equivalent performance LFP opens up so many more applications that we estimate that it can quadruple that million tons of demand and add somewhere between $20 to $40 billion in additional value to the zinc industry.

Any closing thoughts?

What was encouraging was the national commitment in both India and Bangladesh to move aggressively to bring high-performance batteries that were safe, recyclable, and don’t rely on Chinese products or materials to their respective nations. We hear that they’re interested in additional technologies, but to see how fast they want to move—probably quicker than even the United States—was both encouraging and surprising.

Image: Photo by Akshay Nanavati Waldemar Brandt on Unsplash

Advanced Battery Developer Enzinc Wins Global Automotive and Mobility Innovation Challenge

Advanced Battery Developer Enzinc Wins Global Automotive and Mobility Innovation Challenge

Advanced technology repurposes existing lead acid manufacturing infrastructure to expedite the deployment of better batteries

RICHMOND, Calif.:  Enzinc Inc., an advanced rechargeable zinc battery developer, was selected for a competitive $1.8 million California Energy Commission (CEC) BRIDGE award to further develop its zinc batteries for stationary and mobility uses. After approval, the proceeds, along with $1.0 million of matching funds, will be used to design and test a long duration stationary battery and build out a pilot anode manufacturing line.

“If we are to electrify everything, we need batteries that use easily-sourced materials and can be scaled rapidly. Being selected for BRIDGE shows the rising awareness that we can’t place all of our energy storage bets on lithium technologies,” said Michael Burz, founder and CEO of Enzinc. “Today’s $60 billion lead-acid battery market can play a larger role in the energy transition by converting existing factories to use Enzinc’s drop-in technology and make more powerful, higher margin and longer lasting batteries.”

Batteries with Enzinc’s zinc microsponge anode’s safe, non-flammable materials will make it ideal for stationary energy storage inside homes and commercial buildings and adjacent to critical energy infrastructure. Additionally, it will be ideal for mobility including e-bikes, e-scooters, electric delivery vehicles and other electric vehicles with moderate ranges, as well as be able to replace the lead acid battery that all vehicles use for starter motors and other systems.

“The EPIC programs available at each stage of a clean energy company’s development and commercialization are creating a vibrant and innovative industry in California,” Burz said. “We are honored to have been a recipient of these vital awards at key points in our company’s growth and to be selected for BRIDGE.”

The Bringing Rapid Innovation Development to Green Energy, or BRIDGE, awards are funded by the Electric Program Investment Charge (EPIC) program, which will grant up to a total of $57.3 million over four rounds. Enzinc and four other companies were selected for the proposed final round of funding, contingent on final approval at a CEC business meeting.

Previously, Enzinc has received CalSEED Phase I and II awards, together worth $600,000, and a $292,000 CalTestBed voucher for product testing. The selection follows Enzinc’s announcements that it has formed an Industry Advisory Group with global leaders in battery production, use and recycling, and that it won the Global Automotive and Mobility Innovation Challenge, GAMIC, at the SAE International World Congress Experience.