Zinc Battery Developer Enzinc Wins CalSEED Phase II Clean Energy Startup Award

Zinc Battery Developer Enzinc Wins CalSEED Phase II Clean Energy Startup Award

Company wins $450,000 grant, announces prototype surpassed 500 cycles

RICHMOND, Calif.: EnZinc, a clean battery technology developer, and the U.S. Naval Research Laboratory have been published in the prestigious Science magazine on their work to develop a unique three-dimensional (3D) zinc electrode. The research aims to bring a safer, more affordable rechargeable battery to market for electric vehicles, ebikes, and home and grid energy storage.

“This breakthrough in rechargeable battery technology means that zinc has the potential to displace lithium because it is a safer, more affordable, and more readily available material,” said President and CEO of EnZinc, Michael Burz. “Large battery-powered electronics from electric vehicles to home energy storage will be able to be powered by cleaner, fully recyclable zinc-based batteries—and they’ll carry none of the fire risk of lithium-based batteries.”

The report is the culmination of six years of development on a unique 3D zinc sponge structure that for the first time allows zinc, the fourth most mined metal on the planet, to be used as an anode in a rechargeable high-performance battery. The 3D zinc material is inherently safe and totally recyclable, offering a number of advantages over lead acid and lithium ion batteries.

Researchers have tried to make a rechargeable zinc anode since Edison first patented it in the 1900s. However, dendrites—stalactite-like growths that short out a zinc battery when it was recharged—shortened the cycle life of zinc, limiting it to disposable batteries or complex fuel cells. This structure of this new 3D zinc anode eliminates the issue, resulting in a battery that will offer performance comparable to Li-ion batteries with a price more like lead-acid batteries. This new anode can be coupled with various cathode materials to produce a family of batteries for multiple applications ranging from electric vehicles to grid energy storage.

Their work was partially funded from the U.S. Department of Energy’s Advanced Research Projects Agency – Energy (ARPA-E) Robust Affordable Next Generation Energy Storage Program, the remaining funding from the Office of Naval Research and private funding.

Enzinc and the U.S. Naval Research Laboratory Sign License Deal for New 3D Zinc Battery Technology

Enzinc and the U.S. Naval Research Laboratory Sign License Deal for New 3D Zinc Battery Technology

From the U.S. Naval Research Laboratory Press Office

WASHINGTON, DC:  The U.S. Naval Research Laboratory (NRL) has signed a commercial licensing agreement with Enzinc to commercialize the 3D zinc sponge anode technology in a nickel-zinc battery for certain applications. The license gives Enzinc the exclusive rights to all electric road vehicles (from two wheel to multiwheel), hybrid vehicles, start-stop vehicles, and microgrids/distributed grids up to 60MW.

This technology was revealed in the peer-reviewed Science magazine article dated 28 April 2017. “There is significant interest in our plans to commercialize this technology for two such important areas of the renewable marketplace: electric vehicles and microgrids,” said Michael Burz, CEO and founder of Enzinc. “We look forward to continuing our association with the USNRL, one of the nation’s preeminent research laboratories.”

The 3D Zinc sponge anode technology is the first to enable common, safe and low-cost zinc to be used in a high-performance rechargeable battery. Zinc-based batteries will be as powerful as lithium–based batteries with none of the potential for fire, and will be lighter and less toxic than lead-based batteries. Past attempts to make rechargeable zinc batteries have involved pumped zinc slurries, substantially limiting applications and adding complexity and maintenance issues.